fastpastebin/vendor/github.com/alecthomas/chroma/regexp.go

338 lines
8.3 KiB
Go
Raw Normal View History

package chroma
import (
"fmt"
"os"
"regexp"
"strings"
"sync"
"unicode/utf8"
"github.com/dlclark/regexp2"
)
type Rule struct {
Pattern string
Type Emitter
Mutator Mutator
}
// An Emitter takes group matches and returns tokens.
type Emitter interface {
// Emit tokens for the given regex groups.
Emit(groups []string, lexer Lexer) Iterator
}
// EmitterFunc is a function that is an Emitter.
type EmitterFunc func(groups []string, lexer Lexer) Iterator
// Emit tokens for groups.
func (e EmitterFunc) Emit(groups []string, lexer Lexer) Iterator { return e(groups, lexer) }
// ByGroups emits a token for each matching group in the rule's regex.
func ByGroups(emitters ...Emitter) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
iterators := make([]Iterator, 0, len(groups)-1)
// NOTE: If this panics, there is a mismatch with groups. Uncomment the following line to debug.
for i, group := range groups[1:] {
iterators = append(iterators, emitters[i].Emit([]string{group}, lexer))
}
return Concaterator(iterators...)
})
}
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
func Using(lexer Lexer) Emitter {
return EmitterFunc(func(groups []string, _ Lexer) Iterator {
it, err := lexer.Tokenise(&TokeniseOptions{State: "root", Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// UsingSelf is like Using, but uses the current Lexer.
func UsingSelf(state string) Emitter {
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
it, err := lexer.Tokenise(&TokeniseOptions{State: state, Nested: true}, groups[0])
if err != nil {
panic(err)
}
return it
})
}
// Words creates a regex that matches any of the given literal words.
func Words(prefix, suffix string, words ...string) string {
for i, word := range words {
words[i] = regexp.QuoteMeta(word)
}
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
}
// Tokenise text using lexer, returning tokens as a slice.
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]*Token, error) {
out := []*Token{}
it, err := lexer.Tokenise(options, text)
if err != nil {
return nil, err
}
for t := it(); t != nil; t = it() {
out = append(out, t)
}
return out, nil
}
// Rules maps from state to a sequence of Rules.
type Rules map[string][]Rule
func (r Rules) Clone() Rules {
out := map[string][]Rule{}
for key, rules := range r {
out[key] = make([]Rule, len(rules))
copy(out[key], rules)
}
return out
}
// MustNewLexer creates a new Lexer or panics.
func MustNewLexer(config *Config, rules Rules) *RegexLexer {
lexer, err := NewLexer(config, rules)
if err != nil {
panic(err)
}
return lexer
}
// NewLexer creates a new regex-based Lexer.
//
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
// that match input, optionally modify lexer state, and output tokens.
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) {
if config == nil {
config = &Config{}
}
if _, ok := rules["root"]; !ok {
return nil, fmt.Errorf("no \"root\" state")
}
compiledRules := map[string][]*CompiledRule{}
for state, rules := range rules {
compiledRules[state] = nil
for _, rule := range rules {
flags := ""
if !config.NotMultiline {
flags += "m"
}
if config.CaseInsensitive {
flags += "i"
}
if config.DotAll {
flags += "s"
}
compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags})
}
}
return &RegexLexer{
config: config,
rules: compiledRules,
}, nil
}
func (r *RegexLexer) Trace(trace bool) *RegexLexer {
r.trace = trace
return r
}
// A CompiledRule is a Rule with a pre-compiled regex.
//
// Note that regular expressions are lazily compiled on first use of the lexer.
type CompiledRule struct {
Rule
Regexp *regexp2.Regexp
flags string
}
type CompiledRules map[string][]*CompiledRule
type LexerState struct {
Lexer *RegexLexer
Text []rune
Pos int
Rules CompiledRules
Stack []string
State string
Rule int
// Group matches.
Groups []string
// Custum context for mutators.
MutatorContext map[interface{}]interface{}
iteratorStack []Iterator
}
func (l *LexerState) Set(key interface{}, value interface{}) {
l.MutatorContext[key] = value
}
func (l *LexerState) Get(key interface{}) interface{} {
return l.MutatorContext[key]
}
func (l *LexerState) Iterator() *Token {
for l.Pos < len(l.Text) && len(l.Stack) > 0 {
// Exhaust the iterator stack, if any.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == nil {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
l.State = l.Stack[len(l.Stack)-1]
if l.Lexer.trace {
fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:]))
}
ruleIndex, rule, groups := matchRules(l.Text[l.Pos:], l.Rules[l.State])
// No match.
if groups == nil {
l.Pos++
return &Token{Error, string(l.Text[l.Pos-1 : l.Pos])}
}
l.Rule = ruleIndex
l.Groups = groups
l.Pos += utf8.RuneCountInString(groups[0])
if rule.Mutator != nil {
if err := rule.Mutator.Mutate(l); err != nil {
panic(err)
}
}
if rule.Type != nil {
l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l.Lexer))
}
}
// Exhaust the IteratorStack, if any.
// Duplicate code, but eh.
for len(l.iteratorStack) > 0 {
n := len(l.iteratorStack) - 1
t := l.iteratorStack[n]()
if t == nil {
l.iteratorStack = l.iteratorStack[:n]
continue
}
return t
}
// If we get to here and we still have text, return it as an error.
if l.Pos != len(l.Text) && len(l.Stack) == 0 {
value := string(l.Text[l.Pos:])
l.Pos = len(l.Text)
return &Token{Type: Error, Value: value}
}
return nil
}
type RegexLexer struct {
config *Config
analyser func(text string) float32
trace bool
mu sync.Mutex
compiled bool
rules map[string][]*CompiledRule
}
// SetAnalyser sets the analyser function used to perform content inspection.
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
r.analyser = analyser
return r
}
func (r *RegexLexer) AnalyseText(text string) float32 {
if r.analyser != nil {
return r.analyser(text)
}
return 0.0
}
func (r *RegexLexer) Config() *Config {
return r.config
}
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
func (r *RegexLexer) maybeCompile() (err error) {
r.mu.Lock()
defer r.mu.Unlock()
if r.compiled {
return nil
}
for state, rules := range r.rules {
for i, rule := range rules {
if rule.Regexp == nil {
rule.Regexp, err = regexp2.Compile("^(?"+rule.flags+")(?:"+rule.Pattern+")", 0)
if err != nil {
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
}
}
}
}
restart:
seen := map[LexerMutator]bool{}
for state := range r.rules {
for i := 0; i < len(r.rules[state]); i++ {
rule := r.rules[state][i]
if compile, ok := rule.Mutator.(LexerMutator); ok {
if seen[compile] {
return fmt.Errorf("saw mutator %T twice; this should not happen", compile)
}
seen[compile] = true
if err := compile.MutateLexer(r.rules, state, i); err != nil {
return err
}
// Process the rules again in case the mutator added/removed rules.
//
// This sounds bad, but shouldn't be significant in practice.
goto restart
}
}
}
r.compiled = true
return nil
}
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) {
if err := r.maybeCompile(); err != nil {
return nil, err
}
if options == nil {
options = defaultOptions
}
if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") {
text += "\n"
}
state := &LexerState{
Lexer: r,
Text: []rune(text),
Stack: []string{options.State},
Rules: r.rules,
MutatorContext: map[interface{}]interface{}{},
}
return state.Iterator, nil
}
func matchRules(text []rune, rules []*CompiledRule) (int, *CompiledRule, []string) {
for i, rule := range rules {
match, err := rule.Regexp.FindRunesMatch(text)
if match != nil && err == nil {
groups := []string{}
for _, g := range match.Groups() {
groups = append(groups, g.String())
}
return i, rule, groups
}
}
return 0, &CompiledRule{}, nil
}