package chroma import ( "fmt" "os" "regexp" "strings" "sync" "unicode/utf8" "github.com/dlclark/regexp2" ) type Rule struct { Pattern string Type Emitter Mutator Mutator } // An Emitter takes group matches and returns tokens. type Emitter interface { // Emit tokens for the given regex groups. Emit(groups []string, lexer Lexer) Iterator } // EmitterFunc is a function that is an Emitter. type EmitterFunc func(groups []string, lexer Lexer) Iterator // Emit tokens for groups. func (e EmitterFunc) Emit(groups []string, lexer Lexer) Iterator { return e(groups, lexer) } // ByGroups emits a token for each matching group in the rule's regex. func ByGroups(emitters ...Emitter) Emitter { return EmitterFunc(func(groups []string, lexer Lexer) Iterator { iterators := make([]Iterator, 0, len(groups)-1) // NOTE: If this panics, there is a mismatch with groups. Uncomment the following line to debug. for i, group := range groups[1:] { iterators = append(iterators, emitters[i].Emit([]string{group}, lexer)) } return Concaterator(iterators...) }) } // Using returns an Emitter that uses a given Lexer for parsing and emitting. func Using(lexer Lexer) Emitter { return EmitterFunc(func(groups []string, _ Lexer) Iterator { it, err := lexer.Tokenise(&TokeniseOptions{State: "root", Nested: true}, groups[0]) if err != nil { panic(err) } return it }) } // UsingSelf is like Using, but uses the current Lexer. func UsingSelf(state string) Emitter { return EmitterFunc(func(groups []string, lexer Lexer) Iterator { it, err := lexer.Tokenise(&TokeniseOptions{State: state, Nested: true}, groups[0]) if err != nil { panic(err) } return it }) } // Words creates a regex that matches any of the given literal words. func Words(prefix, suffix string, words ...string) string { for i, word := range words { words[i] = regexp.QuoteMeta(word) } return prefix + `(` + strings.Join(words, `|`) + `)` + suffix } // Tokenise text using lexer, returning tokens as a slice. func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]*Token, error) { out := []*Token{} it, err := lexer.Tokenise(options, text) if err != nil { return nil, err } for t := it(); t != nil; t = it() { out = append(out, t) } return out, nil } // Rules maps from state to a sequence of Rules. type Rules map[string][]Rule func (r Rules) Clone() Rules { out := map[string][]Rule{} for key, rules := range r { out[key] = make([]Rule, len(rules)) copy(out[key], rules) } return out } // MustNewLexer creates a new Lexer or panics. func MustNewLexer(config *Config, rules Rules) *RegexLexer { lexer, err := NewLexer(config, rules) if err != nil { panic(err) } return lexer } // NewLexer creates a new regex-based Lexer. // // "rules" is a state machine transitition map. Each key is a state. Values are sets of rules // that match input, optionally modify lexer state, and output tokens. func NewLexer(config *Config, rules Rules) (*RegexLexer, error) { if config == nil { config = &Config{} } if _, ok := rules["root"]; !ok { return nil, fmt.Errorf("no \"root\" state") } compiledRules := map[string][]*CompiledRule{} for state, rules := range rules { compiledRules[state] = nil for _, rule := range rules { flags := "" if !config.NotMultiline { flags += "m" } if config.CaseInsensitive { flags += "i" } if config.DotAll { flags += "s" } compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags}) } } return &RegexLexer{ config: config, rules: compiledRules, }, nil } func (r *RegexLexer) Trace(trace bool) *RegexLexer { r.trace = trace return r } // A CompiledRule is a Rule with a pre-compiled regex. // // Note that regular expressions are lazily compiled on first use of the lexer. type CompiledRule struct { Rule Regexp *regexp2.Regexp flags string } type CompiledRules map[string][]*CompiledRule type LexerState struct { Lexer *RegexLexer Text []rune Pos int Rules CompiledRules Stack []string State string Rule int // Group matches. Groups []string // Custum context for mutators. MutatorContext map[interface{}]interface{} iteratorStack []Iterator } func (l *LexerState) Set(key interface{}, value interface{}) { l.MutatorContext[key] = value } func (l *LexerState) Get(key interface{}) interface{} { return l.MutatorContext[key] } func (l *LexerState) Iterator() *Token { for l.Pos < len(l.Text) && len(l.Stack) > 0 { // Exhaust the iterator stack, if any. for len(l.iteratorStack) > 0 { n := len(l.iteratorStack) - 1 t := l.iteratorStack[n]() if t == nil { l.iteratorStack = l.iteratorStack[:n] continue } return t } l.State = l.Stack[len(l.Stack)-1] if l.Lexer.trace { fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:])) } ruleIndex, rule, groups := matchRules(l.Text[l.Pos:], l.Rules[l.State]) // No match. if groups == nil { l.Pos++ return &Token{Error, string(l.Text[l.Pos-1 : l.Pos])} } l.Rule = ruleIndex l.Groups = groups l.Pos += utf8.RuneCountInString(groups[0]) if rule.Mutator != nil { if err := rule.Mutator.Mutate(l); err != nil { panic(err) } } if rule.Type != nil { l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l.Lexer)) } } // Exhaust the IteratorStack, if any. // Duplicate code, but eh. for len(l.iteratorStack) > 0 { n := len(l.iteratorStack) - 1 t := l.iteratorStack[n]() if t == nil { l.iteratorStack = l.iteratorStack[:n] continue } return t } // If we get to here and we still have text, return it as an error. if l.Pos != len(l.Text) && len(l.Stack) == 0 { value := string(l.Text[l.Pos:]) l.Pos = len(l.Text) return &Token{Type: Error, Value: value} } return nil } type RegexLexer struct { config *Config analyser func(text string) float32 trace bool mu sync.Mutex compiled bool rules map[string][]*CompiledRule } // SetAnalyser sets the analyser function used to perform content inspection. func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer { r.analyser = analyser return r } func (r *RegexLexer) AnalyseText(text string) float32 { if r.analyser != nil { return r.analyser(text) } return 0.0 } func (r *RegexLexer) Config() *Config { return r.config } // Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs. func (r *RegexLexer) maybeCompile() (err error) { r.mu.Lock() defer r.mu.Unlock() if r.compiled { return nil } for state, rules := range r.rules { for i, rule := range rules { if rule.Regexp == nil { rule.Regexp, err = regexp2.Compile("^(?"+rule.flags+")(?:"+rule.Pattern+")", 0) if err != nil { return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err) } } } } restart: seen := map[LexerMutator]bool{} for state := range r.rules { for i := 0; i < len(r.rules[state]); i++ { rule := r.rules[state][i] if compile, ok := rule.Mutator.(LexerMutator); ok { if seen[compile] { return fmt.Errorf("saw mutator %T twice; this should not happen", compile) } seen[compile] = true if err := compile.MutateLexer(r.rules, state, i); err != nil { return err } // Process the rules again in case the mutator added/removed rules. // // This sounds bad, but shouldn't be significant in practice. goto restart } } } r.compiled = true return nil } func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) { if err := r.maybeCompile(); err != nil { return nil, err } if options == nil { options = defaultOptions } if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") { text += "\n" } state := &LexerState{ Lexer: r, Text: []rune(text), Stack: []string{options.State}, Rules: r.rules, MutatorContext: map[interface{}]interface{}{}, } return state.Iterator, nil } func matchRules(text []rune, rules []*CompiledRule) (int, *CompiledRule, []string) { for i, rule := range rules { match, err := rule.Regexp.FindRunesMatch(text) if match != nil && err == nil { groups := []string{} for _, g := range match.Groups() { groups = append(groups, g.String()) } return i, rule, groups } } return 0, &CompiledRule{}, nil }