274 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			274 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package s2k implements the various OpenPGP string-to-key transforms as
 | |
| // specified in RFC 4800 section 3.7.1.
 | |
| package s2k // import "golang.org/x/crypto/openpgp/s2k"
 | |
| 
 | |
| import (
 | |
| 	"crypto"
 | |
| 	"hash"
 | |
| 	"io"
 | |
| 	"strconv"
 | |
| 
 | |
| 	"golang.org/x/crypto/openpgp/errors"
 | |
| )
 | |
| 
 | |
| // Config collects configuration parameters for s2k key-stretching
 | |
| // transformatioms. A nil *Config is valid and results in all default
 | |
| // values. Currently, Config is used only by the Serialize function in
 | |
| // this package.
 | |
| type Config struct {
 | |
| 	// Hash is the default hash function to be used. If
 | |
| 	// nil, SHA1 is used.
 | |
| 	Hash crypto.Hash
 | |
| 	// S2KCount is only used for symmetric encryption. It
 | |
| 	// determines the strength of the passphrase stretching when
 | |
| 	// the said passphrase is hashed to produce a key. S2KCount
 | |
| 	// should be between 1024 and 65011712, inclusive. If Config
 | |
| 	// is nil or S2KCount is 0, the value 65536 used. Not all
 | |
| 	// values in the above range can be represented. S2KCount will
 | |
| 	// be rounded up to the next representable value if it cannot
 | |
| 	// be encoded exactly. When set, it is strongly encrouraged to
 | |
| 	// use a value that is at least 65536. See RFC 4880 Section
 | |
| 	// 3.7.1.3.
 | |
| 	S2KCount int
 | |
| }
 | |
| 
 | |
| func (c *Config) hash() crypto.Hash {
 | |
| 	if c == nil || uint(c.Hash) == 0 {
 | |
| 		// SHA1 is the historical default in this package.
 | |
| 		return crypto.SHA1
 | |
| 	}
 | |
| 
 | |
| 	return c.Hash
 | |
| }
 | |
| 
 | |
| func (c *Config) encodedCount() uint8 {
 | |
| 	if c == nil || c.S2KCount == 0 {
 | |
| 		return 96 // The common case. Correspoding to 65536
 | |
| 	}
 | |
| 
 | |
| 	i := c.S2KCount
 | |
| 	switch {
 | |
| 	// Behave like GPG. Should we make 65536 the lowest value used?
 | |
| 	case i < 1024:
 | |
| 		i = 1024
 | |
| 	case i > 65011712:
 | |
| 		i = 65011712
 | |
| 	}
 | |
| 
 | |
| 	return encodeCount(i)
 | |
| }
 | |
| 
 | |
| // encodeCount converts an iterative "count" in the range 1024 to
 | |
| // 65011712, inclusive, to an encoded count. The return value is the
 | |
| // octet that is actually stored in the GPG file. encodeCount panics
 | |
| // if i is not in the above range (encodedCount above takes care to
 | |
| // pass i in the correct range). See RFC 4880 Section 3.7.7.1.
 | |
| func encodeCount(i int) uint8 {
 | |
| 	if i < 1024 || i > 65011712 {
 | |
| 		panic("count arg i outside the required range")
 | |
| 	}
 | |
| 
 | |
| 	for encoded := 0; encoded < 256; encoded++ {
 | |
| 		count := decodeCount(uint8(encoded))
 | |
| 		if count >= i {
 | |
| 			return uint8(encoded)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 255
 | |
| }
 | |
| 
 | |
| // decodeCount returns the s2k mode 3 iterative "count" corresponding to
 | |
| // the encoded octet c.
 | |
| func decodeCount(c uint8) int {
 | |
| 	return (16 + int(c&15)) << (uint32(c>>4) + 6)
 | |
| }
 | |
| 
 | |
| // Simple writes to out the result of computing the Simple S2K function (RFC
 | |
| // 4880, section 3.7.1.1) using the given hash and input passphrase.
 | |
| func Simple(out []byte, h hash.Hash, in []byte) {
 | |
| 	Salted(out, h, in, nil)
 | |
| }
 | |
| 
 | |
| var zero [1]byte
 | |
| 
 | |
| // Salted writes to out the result of computing the Salted S2K function (RFC
 | |
| // 4880, section 3.7.1.2) using the given hash, input passphrase and salt.
 | |
| func Salted(out []byte, h hash.Hash, in []byte, salt []byte) {
 | |
| 	done := 0
 | |
| 	var digest []byte
 | |
| 
 | |
| 	for i := 0; done < len(out); i++ {
 | |
| 		h.Reset()
 | |
| 		for j := 0; j < i; j++ {
 | |
| 			h.Write(zero[:])
 | |
| 		}
 | |
| 		h.Write(salt)
 | |
| 		h.Write(in)
 | |
| 		digest = h.Sum(digest[:0])
 | |
| 		n := copy(out[done:], digest)
 | |
| 		done += n
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Iterated writes to out the result of computing the Iterated and Salted S2K
 | |
| // function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase,
 | |
| // salt and iteration count.
 | |
| func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) {
 | |
| 	combined := make([]byte, len(in)+len(salt))
 | |
| 	copy(combined, salt)
 | |
| 	copy(combined[len(salt):], in)
 | |
| 
 | |
| 	if count < len(combined) {
 | |
| 		count = len(combined)
 | |
| 	}
 | |
| 
 | |
| 	done := 0
 | |
| 	var digest []byte
 | |
| 	for i := 0; done < len(out); i++ {
 | |
| 		h.Reset()
 | |
| 		for j := 0; j < i; j++ {
 | |
| 			h.Write(zero[:])
 | |
| 		}
 | |
| 		written := 0
 | |
| 		for written < count {
 | |
| 			if written+len(combined) > count {
 | |
| 				todo := count - written
 | |
| 				h.Write(combined[:todo])
 | |
| 				written = count
 | |
| 			} else {
 | |
| 				h.Write(combined)
 | |
| 				written += len(combined)
 | |
| 			}
 | |
| 		}
 | |
| 		digest = h.Sum(digest[:0])
 | |
| 		n := copy(out[done:], digest)
 | |
| 		done += n
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Parse reads a binary specification for a string-to-key transformation from r
 | |
| // and returns a function which performs that transform.
 | |
| func Parse(r io.Reader) (f func(out, in []byte), err error) {
 | |
| 	var buf [9]byte
 | |
| 
 | |
| 	_, err = io.ReadFull(r, buf[:2])
 | |
| 	if err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	hash, ok := HashIdToHash(buf[1])
 | |
| 	if !ok {
 | |
| 		return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1])))
 | |
| 	}
 | |
| 	if !hash.Available() {
 | |
| 		return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash)))
 | |
| 	}
 | |
| 	h := hash.New()
 | |
| 
 | |
| 	switch buf[0] {
 | |
| 	case 0:
 | |
| 		f := func(out, in []byte) {
 | |
| 			Simple(out, h, in)
 | |
| 		}
 | |
| 		return f, nil
 | |
| 	case 1:
 | |
| 		_, err = io.ReadFull(r, buf[:8])
 | |
| 		if err != nil {
 | |
| 			return
 | |
| 		}
 | |
| 		f := func(out, in []byte) {
 | |
| 			Salted(out, h, in, buf[:8])
 | |
| 		}
 | |
| 		return f, nil
 | |
| 	case 3:
 | |
| 		_, err = io.ReadFull(r, buf[:9])
 | |
| 		if err != nil {
 | |
| 			return
 | |
| 		}
 | |
| 		count := decodeCount(buf[8])
 | |
| 		f := func(out, in []byte) {
 | |
| 			Iterated(out, h, in, buf[:8], count)
 | |
| 		}
 | |
| 		return f, nil
 | |
| 	}
 | |
| 
 | |
| 	return nil, errors.UnsupportedError("S2K function")
 | |
| }
 | |
| 
 | |
| // Serialize salts and stretches the given passphrase and writes the
 | |
| // resulting key into key. It also serializes an S2K descriptor to
 | |
| // w. The key stretching can be configured with c, which may be
 | |
| // nil. In that case, sensible defaults will be used.
 | |
| func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error {
 | |
| 	var buf [11]byte
 | |
| 	buf[0] = 3 /* iterated and salted */
 | |
| 	buf[1], _ = HashToHashId(c.hash())
 | |
| 	salt := buf[2:10]
 | |
| 	if _, err := io.ReadFull(rand, salt); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	encodedCount := c.encodedCount()
 | |
| 	count := decodeCount(encodedCount)
 | |
| 	buf[10] = encodedCount
 | |
| 	if _, err := w.Write(buf[:]); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	Iterated(key, c.hash().New(), passphrase, salt, count)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with
 | |
| // Go's crypto.Hash type. See RFC 4880, section 9.4.
 | |
| var hashToHashIdMapping = []struct {
 | |
| 	id   byte
 | |
| 	hash crypto.Hash
 | |
| 	name string
 | |
| }{
 | |
| 	{1, crypto.MD5, "MD5"},
 | |
| 	{2, crypto.SHA1, "SHA1"},
 | |
| 	{3, crypto.RIPEMD160, "RIPEMD160"},
 | |
| 	{8, crypto.SHA256, "SHA256"},
 | |
| 	{9, crypto.SHA384, "SHA384"},
 | |
| 	{10, crypto.SHA512, "SHA512"},
 | |
| 	{11, crypto.SHA224, "SHA224"},
 | |
| }
 | |
| 
 | |
| // HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP
 | |
| // hash id.
 | |
| func HashIdToHash(id byte) (h crypto.Hash, ok bool) {
 | |
| 	for _, m := range hashToHashIdMapping {
 | |
| 		if m.id == id {
 | |
| 			return m.hash, true
 | |
| 		}
 | |
| 	}
 | |
| 	return 0, false
 | |
| }
 | |
| 
 | |
| // HashIdToString returns the name of the hash function corresponding to the
 | |
| // given OpenPGP hash id.
 | |
| func HashIdToString(id byte) (name string, ok bool) {
 | |
| 	for _, m := range hashToHashIdMapping {
 | |
| 		if m.id == id {
 | |
| 			return m.name, true
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return "", false
 | |
| }
 | |
| 
 | |
| // HashIdToHash returns an OpenPGP hash id which corresponds the given Hash.
 | |
| func HashToHashId(h crypto.Hash) (id byte, ok bool) {
 | |
| 	for _, m := range hashToHashIdMapping {
 | |
| 		if m.hash == h {
 | |
| 			return m.id, true
 | |
| 		}
 | |
| 	}
 | |
| 	return 0, false
 | |
| }
 |